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1. Introduction and Objectives 

The computational fluid dynamics (CFD) and computational structural mechanics (CSM) focus areas at 

Argonne’s Transportation Research and Analysis Computing Center (TRACC) initiated a project to 

support and compliment the experimental programs at the Turner-Fairbank Highway Research Center 

(TFHRC) with high performance computing based analysis capabilities in August 2010.  The project was 

established with a new interagency agreement between the Department of Energy and the Department 

of Transportation to provide collaborative research, development, and benchmarking of advanced 

three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics 

laboratories at TFHRC for a period of five years, beginning in October 2010. The analysis methods 

employ well-benchmarked and supported commercial computational mechanics software. 

Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), 

Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational 

Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. 

The major areas of focus of the project are wind and water effects on bridges — superstructure, deck, 

cables, and substructure (including soil), primarily during storms and flood events — and the risks that 

these loads pose to structural failure. For flood events at bridges, another major focus of the work is 

assessment of the risk to bridges caused by scour of stream and riverbed material away from the 

foundations of a bridge. Other areas of current research include modeling of flow through culverts to 

improve design allowing for fish passage, modeling of the salt spray transport into bridge girders to 

address suitability of using weathering steel in bridges, CFD analysis of the operation of the wind tunnel 

in the TFHRC wind engineering laboratory. 

This quarterly report documents technical progress on the project tasks for the period of October 

through December 2011. 

1.1. Computational Fluid Dynamics Summary 

The primary Computational Fluid Dynamics (CFD) activities during the quarter concentrated on the 

development of models and methods needed to continue the ongoing work in scour modeling, culvert 

modeling, CFD analysis of the Turner-Fairbank wind tunnel, CFD modeling and analysis of salt spray from 
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large trucks passing under bridges using weathering steel, and modeling and analysis of concept testing 

for an in-situ scour device to measure scour related properties of sediment bed material.   During this 

quarter, modeling and analysis of the separation of flow at the leading edge of a flooded bridge deck 

was continued to aid in the development of an enhanced approach for evaluating scour due to 

submergence of bridge decks during floods in the federal guidelines.  Modeling of flow through culverts 

for fish passage continued with the work on a porous media model to capture the effects of large 

diameter gravel in the bottom of the culvert revealed some difficulties in obtaining physically realistic 

results in the modeling of flow parallel to porous beds.   Modeling of the wind tunnel in the TFHRC 

laboratory continued, and a new CFD model was developed to analyze flow in the wind tunnel and the 

room under a variety of flow conditions including with and without furniture.  Work on the CFD model 

using the sliding mesh capabilities of STAR-CCM+ with multiphase droplet tracking was continued.  

Simulations for a matrix of conditions are being carried out with different droplet sizes, both a single 

truck and a truck followed by another truck, and two wind speeds with the wind crossing the domain in 

four directions with respect to the truck or trucks. 
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2. Computational Fluid Dynamics for Hydraulic and Aerodynamic 
Research 

During the first quarter of 2012, modeling and analysis of the separation of flow at the leading edge of a 

flooded bridge deck was continued to aid in the development of an enhanced approach for evaluating 

scour due to submergence of bridge decks during floods.  Modeling of flow through culverts for fish 

passage continued with work on using a porous media model to capture the effects of large diameter 

gravel in the bottom of the culvert.  TFHRC provided geometry files for their wind tunnel laboratory and 

the new CFD model was used to analyze flow in the wind tunnel and the room under a variety of flow 

conditions including with and without furniture.  The CFD model using the sliding mesh capabilities of 

STAR-CCM+ with multiphase droplet tracking is being used to test the effects of a variety of conditions 

of droplet distributions under bridges. 

2.1. CFD Analysis of Flow Separation under an Inundated Bridge Deck for 

Application to Pressure Scour Evaluation 

An update to the submerged-flow bridge scour evaluation procedure in HEC-18 [1] is being prepared by 

TFHRC.  The approach to scour hole estimation assumes that the scour process will enlarge the area 

under the bridge until it is large enough to pass the flow with a condition of critical shear stress at the 

bed.  The bridge deck is a bluff body in the flow and flow separation will normally occur at the upstream 

bottom edge of the submerged bridge deck.  The separation zone under the bridge restricts the area 

open to flow under the deck and is therefore an important parameter in conservatively predicting the 

depth of the scour hole.  A set of CFD simulations were performed to investigate the relation between 

the initial opening height under the submerged deck before scour and the thickness of the separation 

zone, and one test was done to see if the thickness of the separation zone changed during the scour 

process. 

 

Figure 2.1: Bridge deck geometry 

Flow 

direction 
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The bridge deck geometry is shown in Figure 2.1, and a schematic of the flow domain is shown in Figure 

2.2.  To reduce computer time and eliminate the effects of the flume side walls, the simulations were 

performed using a section of the bridge deck cut through the middle of a post and running half the 

distance to the center of the next post.  This geometry is shown in Figure 2.3. 

 

Figure 2.2: Schematic of flow domain for separation zone simulations 

 

 

 

Figure 2.3: Symmetric section of bridge deck from center of a railing post to halfway to the next post 

Symmetric boundary conditions were used on the cross stream sides of the domain.  The simulations 

were done as single phase flow with a flat water surface using a symmetry boundary condition at the 

surface.  Previous tests have been done using the multiphase VOF model for free surface flow, and the 

    Flow 

direction 

b = 0.058 m 

w = 0.26 m 
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flat surface assumption is good except in the case with the bridge deck very close to the surface but still 

overtopped.  The inlet boundary was taken to be a uniform velocity located just at the outlet of the 

honeycomb in the TFHRC scour flume.  The honeycomb is a flow straightener that also strips off 

boundary layers, and therefore the uniform inlet velocity is a reasonably good assumption applied at 

this position.   

2.1.1. Parameters Affecting Separation Zone Maximum Thickness under Bridge Deck 

The thickness of the separation zone under a flooded bridge deck, t, is affected by several factors, such 

as the geometry of the superstructure, constriction of the flow, bridge opening, water level, etc. Some 

of these parameters directly reflect the effect of the two boundaries, channel bottom and water surface 

in open channel flow. Thus, it is necessary to catalog different conditions based on the relative position 

of bridge structures to those two boundaries. The conditions include: (1) Water surface is far enough 

above the deck not to significantly affect the water flow conditions near the fully-submerged bridge 

deck. Under this flow condition, the finite distance from the bridge deck to the channel bottom is an 

important parameter that is related to the thickness of the separation zone, t. This is hereafter referred 

to as the surface-far-field condition. (2) The channel bottom is far from the bridge deck. The boundary of 

water surface becomes a primary factor influencing the separation zone thickness. This will be referred 

to as the bottom-far-field condition. (3) There is no influence from either of the boundaries to the flow 

field around bridge structures, which can be called the far-field condition. (4) Both of the boundaries 

may limit the flow field near bridge structures, which can be called the shallow water condition. Under 

this condition, neither surface-distance nor bottom-distance can be neglected in the analysis. 

Most situations during an overtopping flood event fall into the condition (2) and (4). This also includes 

the partially submerged situation. To consider the condition (2) firstly, the variables that influence the 

thickness of separation zone, t, may be gravitational acceleration, g, water dynamic viscosity, µ, water 

density, ρ, surface distance, ht, effective blocked flow rate, qb, and overhang-geometrical factor, α, as 

illustrated in Figure 2.4. For a partially submerged deck, the flow between the bottom face of girders 

and water surface are blocked by the deck. For fully inundated deck, the blockage extends from the 

bottom face of girders to the highest point of the stagnation streamline. Based on a series of CFD 

simulations, the highest point of the stagnation streamline is found to be at approximately 10% of deck 

thickness (0.1T) above the upper edge of the deck blockage not including railing and posts.  This 

maximum position of the stagnation streamline may be a combination of additional flow resistance from 

posts and railing and conditions where the bridge superstructure is near the water surface with flow 

surface level prevented from exceeding the flat surface assumption used to allow use of a single phase 

model.  These results should be checked using the more computationally expensive two phase VOF free 

surface model. 
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Figure 2.4: Streamlines showing the mass flow blocked by the bridge superstructure 

 

2.1.2. Relation between Separation Zone Thickness and Bridge Width 

To consider the flow condition (4) described in section 2.1.1, cases without scour are simulated in STAR-

CCM+. Results showed that the separation zone thickness is dependent on bridge opening hb and 

independent of the mean velocity upstream. The velocity range tested as shown in Figure 2.5. It linearly 

increases as bridge opening increases in a completely submerged situation, and linearly decreases as 

bridge opening increases, blocking less flow, in a partially submerged situation. The peak point in Figure 

2.5 corresponds to the situation that the top of bridge just touches the water surface.  The CFD result 

data for these parameters is listed in Table 2.1. 

Although an obvious trend is not observed between the separation zone thickness and mean velocity 

upstream for the unscoured bottom, a relationship may exist for a scoured bottom contour. because the 

mean velocity upstream affects opening height required to pass the flow under the bridge at the critical 

velocity of sediment transport. 

b 1.1b

t

0lth
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Figure 2.5: Separation Zone Thickness Verse Bridge Opening 

 

Table 2.1: Contraction of flow under bridge deck 
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2.1.3. Relation between Separation Zone Thickness and Deck Thickness 

For the bottom-far-field condition, the separation zone thickness linearly increases as deck thickness or 

girder length as shown in Figure 2.6 based on the numerical simulation. Qualitatively speaking, the 

thicker the bridge deck is, the larger the turning angle for fluid traveling along the stagnation streamline, 

and therefore, a greater separation zone thickness is expected. 

 

Figure 2.6: Separation Zone Thickness versus Girder length 

 

2.1.4. Relation between Separation Zone Thickness and 1st Girder Setback 

It is also found that the thickness of separation decreases as α, defined as      , increases for a given 

flow condition, with an approximate relationship of      . The relation is as shown in Figure 2.7. The 

effect of  may highly depend on details of bridge geometry.  For the deck geometry considered in this 

study, the thickness of separation for different distances of setback may be obtained by multiplying the 

factor         by the t value based on the standard bridge deck, in which    is for the standard bridge 

deck model with the value of     , and    is a current ratio of overhang distance to girder length. Figure 

2.8 shows the typical results for two different setbacks.  With larger set back distances, the smaller 

blockage of the leading edge of the deck starts the turning of streamlines at a greater distance from the 

main blockage of the girders, yielding a smaller turning angle when the flow separates at the leading 

edge of the first girder and a less thick separation zone under the girders. 
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Figure 2.7: Separation Zone Thickness versus 1st Girder Setback Distance 

 

Figure 2.8: Numerical Simulation for Different Setbacks of 1st Girder 
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2.1.5. Dimensional Analysis Relations for Separation Zone Thickness 

For the bottom-far-field condition, the following formula is developed: 

{
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For the shallow water condition, the following formula is developed: 
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Frt is an effective Froude number defined as:    √   
    for fully-submerged situation 

Ret is an effective Reynolds number defined as:             for fully-submerged situation 
ht is the distance from water surface to bottom of bridge girders in fully-submerged situation 

Fra is an effective Froude number defined as:   √   for partially-submerged situation 

Rea is an effective Reynolds number defined as:       for partially-submerged situation 
a is the distance from water surface to bottom of bridge girders in partially-submerged situation  
α is a geometrical factor defined as:      
 
The coefficients can be determined by correlating with existing experimental data sets.  These relations 

may be modified to better fit the experimental data.  Comparison of these relations with the trends of 

CFD predictions also needs to be done.  Given that the Reynolds number for water flows is about 1 x 106 

times the length and velocity scales, Reynolds numbers are expected to be well above 10,000, a low 

value that may be encountered at the laboratory scale, characteristic of fully turbulent flow.  At high 

Reynolds numbers drag and associated separation and wake size tends to be at most only a weak 

function of Reynolds number.  The Froude number for shallow water is a measure of flow speed divided 

by wave speed in free surface flows, and therefore the rate at which presence of downstream 

obstructions can be communicated upstream.  Smaller Froude numbers are expected to correspond to 

conditions in which the flow has more time to react to and begin to turn around an obstruction, yielding 

a smaller turning angle and thinner separation zone around the side of the obstruction.  Further 
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investigation is needed to determine if the relationship of these parameters to separation zone 

thickness is strong enough to include them in a correlation for the thickness. 
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2.1.6. Scale Up from Laboratory Scale to Full Size Bridge Deck 

So far all the experiments and the simulations were conducted on the lab scale model which is about 

two orders of magnitude smaller than the typical real bridges. In the current quarter a comparative 

study was performed aiming to determine influence of the scale of the model on the results, i.e. on the 

separation bubble thickness underneath the inundated deck. For that purpose a model with a large 

domain around the bridge deck was built to simulate the deck acting as a bluff body in an infinite ocean. 

That way the influence of the boundaries and free water surface were eliminated. Three sizes of the 

domain and the deck were considered: 

– A lab scale model (deck height of 0.058 m and domain of 2 m x 6 m) 

– 10 times the lab scale model (deck height of 0.58 m and domain of 20 m x 60 m), and 

– 100 times lab scale model (deck height of 5.8 m and domain of 200 m x 600 m) 

In all models the number of cells was around 600,000. Different settings were used for the prism layer 

thickness to achieve reasonable accuracy of the results using wall functions to determine shear stress on 

the bridge deck wall boundaries. In all the models the water velocity was set to the lab experiment 

velocity of 0.4 m/s. The left domain boundary was set as a velocity inlet and the right one as a pressure 

outlet. The bed was modeled as a wall and all the rest of the boundaries were modeled as the symmetry 

planes. 

The problems were calculated using the implicit unsteady solver. For each simulation different 

simulation time was set, based on selected time step of calculations. From the smallest model to the 

biggest the time steps used were 0.05 sec, 0.5 sec and 5 sec respectively. The corresponding simulation 

real time was 12 sec, 120 sec and 1200 sec respectively, approximately one domain residence time. 

Figure 2.9: shows the velocity profiles in the three analyzed models. While they are similar for the lab 

scale model and 10x, the full scale 100x model has an unsteady wake using an unsteady k-epsilon 

turbulence model.  Using a turbulent Reynolds number defined using the eddy viscosity, t, in the wake 

region, this Reynolds number is around 35 for the 10x scale up and increases to near 500 for the 100x, 

full scale case.  Under these conditions the mean flow in the RANS simulation becomes unstable and 

must be computed with using an unsteady RANS model.  This unsteady behavior does not affect the 

separation zone thickness under the bridge deck, however.  The ratio of separation zone thickness to 

deck height remains nearly constant from the laboratory scale to full scale. 
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Figure 2.9: Velocity profile in the three models (top) lab scale (middle) 10 times the lab scale (bottom) 100 times 

the lab scale 

Figure 2.10 shows the boundary streamlines for the separating flow. Based on these streamlines the 

thickness of the separation zones was determined.  
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Figure 2.10: Boundary streamlines underneath the deck for three models 

The thickness of the separation zone in these models was 0.0320 m in the lab scale model, 0.357 m in 

the 10 times bigger model and 3.34 m in the biggest model. These values are plotted in Figure 2.11 

together with the ideal curve representing linear scaling of the thickness. The calculated results almost 

perfectly follow this ideal pattern. For this reason it can be concluded that the separation zone thickness 

is scaling linearly with the scale of the model and the lab scale results can be used to determine pressure 

scour conditions underneath the bridge. It has to be noted that this calculation was performed for the 

case where the river bed was far enough from the bridge deck so it was not influencing the results. 

However, when it is closer to the bed, the size of the sand grains need to be taken into account too as 

they are not linearly scaled with the size of the model and this linearity may be disturbed. 
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Figure 2.11: Thickness of the separation zone as a function of the scale of the model 

 

2.2. Modeling of the Wind Tunnel Laboratory at TFHRC 

2.2.1. Model Development 

A study of the TFHRC wind tunnel CFD modeling was initiated in the previous quarter. The CFD model of 

the wind tunnel was created based on the CAD data provided by TFHRC. Multiple runs of the air flow 

through the tunnel in the laboratory room were conducted. In the initial runs the lab furniture was not 

included in the models. Also the method of modeling the screens in the tunnel as porous baffles was 

simplified. In the current quarter the most representative simulations out of the ones without the 

furniture were repeated with enhanced modeling of the screens. Also the model with the furniture in 

the lab room was created and analyzed. The current report documents the enhancements and the new 

results. 

To replicate the screens installed in the tunnel a model of porous baffles was used. According to the 

STAR-CCM+ user guide [1] the pressure drop across a porous baffle can be modeled with the following 

equation: 

      ( |  |   )   2.1 

Where:  

  - is the density of air,  

n  - is the normal velocity of air acting on the screen and 
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 α and  are parameters that depend on screen geometry and properties.  

In the literature only information about the possible derivations of  were found and the equation 2.1 

was usually simplified to a form [2]: 

 
    

 

 
    

  
2.2 

In the initial runs  parameter was assumed to be zero and α parameter was assumed to be constant 

( = 0.3632). Setting parameter  to zero in Equation 2.1 we could relate  to the K parameter as: 

      2.3 

A more advanced formula by Weighardt defines K as a function of air normal velocity on the screens [3]: 

 

     [
   

  ] [
   

  
]
 

 
 
 

2.4 

Where: 

n - is the air velocity normal to the screens,  

d  - is the screen wire diameter and 

 - is the kinematic viscosity of the air.  

Taking the diameter of the screen wire as 0.0075 inch, the kinematic viscosity of air as 15.68e-6 m/s2 

and normal velocity on the screens, the equation 2.4 was used to calculate   parameter each iteration 

using STAR-CCM+ field functions. The ideal definition would allow for taking into account a local value of 

the velocity on the screens. That would result in variable porous baffle parameters within a screen. 

However, this was not possible in the STAR-CCM+ and the velocity was taken as a surface averaged 

normal velocity of air. In Table 2.2 velocity measurements on the screens and calculated values of   for 

the model without the furniture are listed.  The values for alpha are substantially different from the 

assumed initial value of 0.3632. 

Table 2.2: Alpha parameter variation on the screens 

screen number normal velocity (m/s) alpha ( - ) 

1 8.532 0.442 

2 8.498 0.442 

3 6.516 0.483 

4 4.937 0.530 

5 3.803 0.578 

6 2.892 0.634 

7 2.118 0.703 

8 1.847 0.736 
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2.2.2. Results 

The first set of simulations model the system without the furniture in the room to determine the 

characteristics of the flow field in an empty room as a base case. In the initial model the mass flow 

through the fan inlet on the right side was 18.713 kg/s (15.54 m3/s) and 17.058 kg/s (14.17 m3/s) on the 

left side (The left side inlet is obstructed with a pulley plate for turning the fan). This reading was taken 

after 1000 iterations under steady state conditions. For each of the models additional 100 or more 

iterations were requested at the end of the simulation with updated values of alpha for each of the 

screens. At this stage the mass flows were read again. At the side obstructed with the pulley (pulley-

side) the mass flow changed to 18.078 kg/s (15.27 m3/s) and on the other side (no-pulley-side) the mass 

flow changed to 16.765 kg/s (14.16 m3/s). Overall the change was about 2.6 %. This value is very small 

and can be said that is in the range of the uncertainty as the mass flow is oscillating (in third digit) during 

the simulation and is not converging to a greater extent when the number of iterations in increased.  

Table 2.3 shows comparison of the mean air velocities registered between the screens and on the inlet 

and outlet of the extension of the tunnel for both initial and updated model. There is a drop in the mean 

velocity because of the increased resistance of the porous baffles. However, the change is very small 

and for each section is less than 3.0 %. This tendency was registered for all the other analyzed cases, so 

this comparison was not repeated in this report and only the final results are presented.  

Table 2.3: Mean air velocity in the tunnel 

location initial model updated model 

section between 1st  and 2nd  screen 8.87 8.65 

2 - 3 8.25 8.05 

3 - 4 6.03 5.87 

4 - 5 4.60 4.48 

5 - 6 3.52 3.43 

6 - 7 2.63 2.56 

7 - 8 1.99 1.94 

extension in 9.04 8.80 

extension out 9.04 8.80 

 

T e model wit  t e furniture was also updated. T e cabinet was rotated and placed next to t e tunnel’s 

wall, as it is in the real lab. Figure 2.12 and Figure 2.13 show the velocity distribution in the lab in two 

cross sections – vertical and horizontal respectively. The horizontal cross section was created above the 

level of the computer desks so they are not visible in the figure. The higher elements of the furnishing 

are not influencing the returning flow to the fan inlets. 16.827 kg/s (14.21 m3/s) of air is flowing through 

the obstructed fan inlet. 17.894 kg/s (15.11 m3/s) of air is flowing through the other side of the fan. This 

is very close to the amount of air flowing through the fan in the model without the furniture in the 

room. The furniture is not negatively influencing the air mass flow in the lab. 
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Figure 2.12: Velocity profile in model with the furniture – vertical plane 

 
 

Figure 2.13: Velocity profile in model with the furniture– horizontal plane 

Table 2.4 shows the surface averaged velocity of the air on the screens and corresponding to it the value 

of the alpha parameter. The values are not much different from the values in Table 2.2 for the model 

without the furniture. 

TFHRC was interested in the quality of the flow inside of the tunnel extension and outside of it, 

approximately 4 to 5 ft downstream of the exit where tested objects are installed. For that purpose 

additional derived parts were created as vertical squares with the cross section size of the wind tunnel 

extension. In this report main focus was on the velocity distributions in the test sections, which are not 

in an enclosure, but out in the room. 
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Table 2.4: Alpha parameter variation on the screens 

screen number normal velocity (m/s) alpha ( - ) 

1 8.493 0.442 

2 8.449 0.443 

3 6.486 0.483 

4 4.913 0.531 

5 3.781 0.580 

6 2.876 0.635 

7 2.107 0.704 

8 1.865 0.733 

 

The following sections were considered: 

– Outlet of the tunnel extension 

– 2 ft beyond the outlet 

– 3 ft beyond the outlet 

– 4 ft beyond the outlet 

– 5 ft beyond the outlet 

– 6 ft beyond the outlet 

 

Figure 2.14: Location of the sections of interest in the model 

When initial models and meshes were built and tested, the test section was assumed to be in the tunnel 

extension and a fine mesh in the internal flow region was judged to be sufficient. The mesh has now 

gone through several refinement tests for about 2 hydraulic diameters downstream of the tunnel exit 

for better assesment of the flow quality outside of the tunnel. As previously noted the room geometry 

and end wall have very little effect on the internal flow past the first couple of screens, but in an 
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external test zone, there are some room effects. The computational mesh around the testing section 

was significantly refined (cell size on the edges ~ 0.9 in). Figure 2.15 shows the new mesh outside of the 

tunnel extension in the testing section. The geometry of the pulley was not updated yet and it is still 

represented as a solid disc as it was in the CAD files.  A recent meeting at the test facility revealed that 

the pulley is actually an open wheel with spokes, and that geometry will be incorporated into the model. 

 

Figure 2.15: Mesh refinement outside of the tunnel extension 

A literature search was performed on jet half angles. Based on G. Horn & M. W. T ring “Angle of Spread 

of Free Jets” Nature 178, 205 - 206 (28 July 1956) measured values of the jet half-angle have been 

variously reported from 7° to 20°. Using Prandtl's hypothesis, Tollmien calculated the jet half-angle to be 

12°. An estimate based on our CFD analysis indicates that the angle is about 13.5° (influenced by the 

interaction with the end wall and where you draw the line for measurement). This value is in agreement 

with estimates form the literature.  

 

Figure 2.16: Measurement of the jet half-angle 

The literature also indicates that the potential core (cone shaped for circular jets) will extend between 4 

to 5 diameters downstream.  The TFHRC test section is within one hydraulic diameter downstream of 

the tunnel exit, and the test bridges are close to the size of the exit opening width.  
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Figure  2.17: Velocity distribution in the section of interest 

Figure  2.17 shows the velocity profiles in the testing sections.  These profiles indicate that the velocity 

decreases more rapidly on the turbulence generator side of the jet than on the side with the larger 

amount of open space. Figure 2.19 present velocity distribution at the horizontal line running through 

the middle of the defined sections. The center of a 5 ft. bridge deck is shown aligned with the wind 

tunnel centerline. Asymmetries in room yield a smaller velocity drop on one side of the deck than the 

other.  At 3 ft there is about 2 % drop in velocity at the ends. At 5 ft. downstream, a 8% drop on the 

turbulence generator side versus only a 4% velocity drop on the other side. 

Tunnel outlet 2 ft away 

Turbulence 

generator  side 

3 ft away 4 ft away 

5 ft away 6 ft away 
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Figure 2.18: Velocity distribution downstream of the tunnel exit. Model with furniture, speed of fan 500 rpm. 

Figure 2.19 presents a similar graph for the case where rotational velocity of the fan was dropped to 250 

rpm from the initial value of 500 rpm. The velocity distribution in this case is more uniform on the edges 

of the bridge model. At 3 ft there is about 1 % drop in velocity at the ends. At 5 ft there is about 3 % 

drop on the turbulence generator side and about 1 % drop in velocity on the other side. 

 

Figure 2.19: Velocity distribution downstream of the tunnel exit. Model with furniture speed of fan 250 rpm. 

 

 

In this quarter the model with the installed turbulence generator was analyzed again. Figure 2.20 and 
Figure 2.21 show the velocity profiles in the room. Since the turbulence generator was not fully in its 
neutral position in the provided CAD files, the flow is not symmetrical and is also directed downward.   
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Figure 2.20: Velocity profile in model with the furniture – vertical plane 

 

Figure 2.21: Velocity profile in model with the furniture – horizontal plane 

This arrangement of vanes has a impact on uniformity of the flow in the testing section outside of the 

tunnel. Figure  2.22 shows velocity profiles in several cross sections outside of the tunnel. The further 

from the tunnel the more non uniform the flow is in the horizontal plane.  
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Figure  2.22: Velocity distribution in the section of interest 

Figure 2.23 shows the velocity distribution at the horizontal line running through the middle of the 

defined sections with bridge deck aligned with the center of the wind tunnel. The plot shows a 

significant drop of the velocities on the edges of the testing section even for sections close to the outlet 

of the tunnel. Also the plot shows non-uniformity from left to right side of the room.  

Tunnel outlet 2 ft away 

Turbulence 

generator  side 

3 ft away 4 ft away 

5 ft away 6 ft away 
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Figure 2.23: Velocity distribution downstream of the tunnel exit. Model with installed turbulence generator. 

Further testing would be required to determine if there is a turbulence generator vane position that has 

only an acceptably small impact on the downstream flow pattern when the turbulence generator is not 

in active use. 
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2.3. Modeling of the In-Situ Scour Testing Device 

2.3.1. Model Development 

TFHRC is working on the development of an in-situ scour testing device. The device is supposed to work 

as a propeller pointing directly toward the water bed. The stream of water generated by it will be 

eroding the bed and the rate of this erosion will be recorded. As an initial study a simple experiment was 

performed on a small plastic impeller rotating in the water above a sand covered bottom as shown in 

Figure 2.24 a. The propeller was rotating with the speed of 250 rotations per minute. After few seconds 

of t e experiment t e sand was eroded and a “scour  ole” was created in t e bed.  

There was a question asked by TFHRC on shear stress distribution on the bed during this experiment. For 

that reason a CFD model was built that contained a domain for air, water and the propeller. The CAD 

data was provided by TFHRC. Initial velocity of the propeller was not provided so it was assumed to be 

300 rpm. Also the size of the sand grains in the bed was unknown initially so it was assumed to be 1 mm. 

Further discussion revealed that the size of the sand grains in the real experiment was 0.5 mm so the 

model was updated accordingly.  

  
Figure 2.24: (a) The simple propeller experiment at TFHRC, (b) its CFD model 

The CFD model presented in Figure 2.24 b was built of approximately 1,200,000 cells with very dense 

mesh around the blades to precisely capture complex geometry of the device. The model was complex 

not only due to the shape but also due to physics replicated in the simulation. An Eulerian multiphase 

model, the VOF model, for the multiphase mixture of water and air with surface reconstruction was 

used. A Lagrangian multiphase model was activated for tracking the sand particles.  The rigid body 

motion solver was used to simulate rotation of the device. The implicit unsteady solver with 0.005 sec 

time step was used to solve the problem. 5.0 s of real time were simulated. Each time step consisted of 

10 inner iterations which resulted in 10,000 iterations to compute 5.0 s of time.   

2.3.2. Results 

Figure 2.25 presents the reconstruction of the water surface at the end of the simulation. Figure 2.26 

presents the distribution of the sheer stresses and the shear vectors on the lower boundary of the 
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domain respectively. The highest stresses are noticeable underneath the blades. In the center of the 

model the stresses are close to zero. The highest registered stress for this case was ~4.54 Pa. 

 
Figure 2.25: Reconstruction of the water surface in the simulation 

 
Figure 2.26: Shear stress on the bottom of the testing domain 
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In order to replicate the behavior of the sand bed, TRACC has worked on utilization of the Discrete 
Element Method (DEM) for representing individual sand grains. DEM has a big advantage over simple 
Lagrangian Particle tracking in dense particle flows in that it accounts for the interaction between the 
particles. However, it has turned out to be very cumbersome in implementation and cannot currently 
compute the flow of large numbers of particles (>~105) in a reasonable amount of computer time and 
therefore, for now this method was not pursued. In the coming quarters more tests will be conducted 
on it to see if it provides a good model for the upward transport of sediment via the auger of the in-situ 
device. In the current quarter Lagrangian Particle Tracking was used instead and only a small portion of 
the sand particles was simulated. A grid of injectors was located near the bottom surface of the model. 
Sand particles with 1 mm diameter were injected into the domain vertically upward with a small initial 
velocity of 0.005 m/s. The location of injectors is shown in Figure 2.27. The particles were injected at 
different stages of the simulation. At any time of the simulation the flow was not able to lift them much. 
The trajectories of particles are shown in Figure 2.28.  

 
Figure 2.27: Location of the injectors of the particles 
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Figure 2.28 Trajectories of the 1 mm sand particles  

As mentioned in the introduction the assumptions on the initial conditions were corrected by TFHRC 
once these initial results were presented. The actual angular velocity of propeller was changed from 300 
to 250 rpm and sand particles with 0.5 mm diameter were injected instead of 1 mm. The water surface 
reconstructed in this simulation is shown in Figure 2.29.  

 
Figure 2.29 Reconstruction of the water surface in the updated model 

The highest shear stresses dropped from 4.54 to 4.40 Pa in comparison to the initial simulation where 
the velocity of propeller was higher. The updated distribution of the shear stresses on the bed is shown 
in Figure 2.30.  
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Figure 2.30 Real shear stress distribution on the bottom 

Although the particles injected this time were two times smaller in diameter than previously, they were 
not raised much from the bottom either. Their trajectories are shown in Figure 2.31. Almost all particles 
ended up on the ground moved close to the external boundary of the domain where the shear stress 
was near zero. The final location of the particles is shown in Figure 2.32.  
 

 
Figure 2.31 Trajectories of the sand particles 
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Figure 2.32 Final location of the sand particles shown in white  
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2.4. Computational Modeling and Analysis of Flow through Large Culverts for Fish 

Passage 

Fish passage through culverts is an important component of road and stream crossing design.  As water 

runoff volume increases, the flow often actively degrades waterways at culverts and may interrupt 

natural fish migration.  Culverts are fixed structures that do not change with changing streams and may 

instead become barriers to fish movement.  The most common physical characteristics that create 

barriers to fish passage include excessive water velocity, insufficient water depth, large outlet drop 

heights, turbulence within the culvert, and accumulation of sediment and debris.  Major hydraulic 

criteria influencing fish passage are: flow rates during fish migration periods, fish species, roughness, 

and the length and slope of the culvert. 

The objective of this work is to develop approaches to CFD modeling of culvert flows and to use the 

models to perform analysis to assess flow regions for fish passage under a variety of flow conditions.  

The flow conditions to be tested with CFD analysis are defined in the tables of a work plan from TFHRC 

[6].  The CFD models are being verified by comparing computational results with data from experiments 

conducted at TFHRC.  A primary goal of CFD analysis of culverts for fish passage is to determine the local 

cross section velocities and flow distributions in corrugated culverts under varying flow conditions.  In 

order to evaluate the ability of fish to traverse corrugated culverts, the local average velocity in vertical 

strips from the region adjacent to the culvert wall out to the centerline under low flow conditions will be 

determined. 

A primary goal of the CFD analysis during this quarter has been to investigate methods to model gravel 

in the culvert.  The test matrix in the TFHRC work plan [6] includes tests with the bed height at 15% and 

30% of the culvert diameter.  For these cases, the culvert bed material is coarse gravel with a mean 

diameter, D50 = 12 mm.  At this gravel size, the gravel bed boundary cannot be treated as a rough wall 

using wall functions because the centroid of the near wall computational cell must be at a position that 

is greater than the roughness height.  For 12 mm gravel, the near wall mesh would be far too large for 

the analysis results to be mesh independent.  Two options to model flow parallel to a porous gravel bed 

are (1) to treat the bed as a porous media, with a flat interface dividing the two flow zones, and (2) to 

mesh out the rough bed contour created by the top layer of gravel.  The methods for generating various 

velocity averages over a cross section from the work plan [6] that may be applied in improved fish 

passage analysis are summarized in section 2.4.1, and comparisons with experiments are also shown in 

the figures. 

2.4.1. Modeling Culvert Flow above a Gravel Bed 

A primary goal of the CFD analysis during this quarter has been to investigate methods to model gravel 

bed in the culvert. The test matrix in the TFHRC work plan includes tests with the bed height at 15% and 

30% of the culvert diameter. For these cases, the culvert bed material is coarse gravel with a mean 

diameter, D50 = 12 mm. Since the experiments in the TFHRC were conducted by gluing a layer of gravel 

on the flume bed, meshing out the rough bed contour created by the top layer of gravel is a method to 

calibrate CFD modeling the culvert flow above a gravel bed. 
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2.4.1.1. Tests scenarios 

During this quarter, both experiments and CFD model simulated the bed elevation for 0.15 culvert 

diameter situations. The flow velocities are 0.71 ft/s and 1.1 ft/s, and the water depths are 4.5 inch, 6 

inch, and 9 inch. The specified proposal gravel with a mean diameter, D50 = 12 mm, which was used in 

the CFD model, while in the real experiments we used D50 = 10.5 mm. The sketch of the flume with the 

corrugated pipe is shown in Figure 2.33. 

 

Figure 2.33: Bed elevation at 0.15 culvert diameter and symmetrical half of flume culvert model 

 

2.4.1.2. CFD modeling methodology 

Briefly, the method of mimicking the gravel in the CFD model is to mesh out the rough bed created by a 

half layer of gravel. The CAD model was created in Pro-ENGINEER. Figure 2.34 illustrates the method of 

creating a D50 =24mm gravel. In order to avoid the numerical error caused by sharp angles between 

grids, two quarter-circular arcs with the diameter of D50 are used to get smooth connections. Then the 

curve is rotated around the axis to create a flume bed surface bump approximation of a piece of gravel, 

and these are replicated over the flume bed model to create a rough bed with large roughness elements 

on the flume bed. Figure 2.35 shows the truncated model with the bed surface created by the gravel 

geometry. 
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Figure 2.34: Illustration of the gravel creation method in the CAD model  

 

 

Figure 2.35: Truncated CAD model with the culvert bed surface created by the model gravel geometry 

 

2.4.1.3. Comparison between CFD and experimental results 

In order to calibrate the CFD model with the experimental results, the velocity distribution and 

magnitude between the CFD and PIV, the CFD and ADV is compared in corresponding areas. All the 

figures are derived from uniform data, which were interpolated once from the original computational 

cell data and observed data. The depth-averaged velocity and cumulative average velocity curves are 

developed based on the CFD data. The comparisons between CFD and experimental results and the 

velocity curves developed under different flow conditions are illustrated in Figure 2.36 through Figure 

2.47.  
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1) Velocity is 0.71 ft/s, and the water depth is 4.5 inch  

 

Figure 2.36: Comparison of the velocity distribution contour between CFD and PIV, CFD and ADV under the flow 
condition of 0.71fts and 4.5inch water depth 

 

 

 

Figure 2.37: Depth-averaged velocity and cumulative average velocity curves development under the flow  
condition of 0.71fts and 4.5inch water depth 
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2) Velocity is 0.71 ft/s, and the water depth is 6 inch 

 

Figure 2.38: Comparison of the velocity distribution contour between CFD and PIV, CFD and ADV under the flow 
condition of 0.71fts and 6 inch water depth 

 

 

 

Figure 2.39: Depth-averaged velocity and cumulative average velocity curves development under the flow 
condition of 0.71fts and 6 inch water depth 
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3) Velocity is 0.71 ft/s, and the water depth is 9 inch 

 
 
 
 

Figure 2.40: Comparison of the velocity distribution contour between CFD and PIV, CFD and ADV under the flow 
condition of 0.71fts and 9 inch water depth 

 

 

 
Figure 2.41: Depth-averaged velocity and cumulative average velocity curves development under the flow 

condition of 0.71fts and 9 inch water depth 
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4) Velocity is 1.1 ft/s, and the water depth is 4.5 inch 

 
Figure 2.42: Comparison of the velocity distribution contour between CFD and PIV, CFD and ADV under the flow 

condition of 1.1fts and 4.5 inch water depth 

 

 

 
Figure 2.43: Depth-averaged velocity and cumulative average velocity curves development under the flow  

condition of 1.1fts and 4.5 inch water depth 
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5) Velocity is 1.1 ft/s, and the water depth is 6 inch 
 

 
 

Figure 2.44: Comparison of the velocity distribution contour between CFD and PIV, CFD and ADV under the flow 
condition of 1.1fts and 6 inch water depth 

 

 

 
Figure 2.45: Depth-averaged velocity and cumulative average velocity curves development under the flow  

condition of 1.1fts and 6 inch water depth 
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6) Velocity is 1.1 ft/s, and the water depth is 9 inch 

 

Figure 2.46: Comparison of the velocity distribution contour between CFD and PIV, CFD and ADV under the flow 
condition of 1.1fts and 9 inch water depth 

 

 

 

Figure 2.47: Depth-averaged velocity and cumulative average velocity curves development under the flow  
condition of 1.1fts and 9 inch water depth 
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2.4.1.4. Data process and error analyses 

All original velocity data for each cell was exported and interpolated into uniform grids of 5 mm*5 mm 

in MATLAB. The PIV and ADV data can also be interpolated into uniform grids of 5 mm * 5 mm.  

Here, we introduce an important variable called RMSD (root–mean–square deviation) to do the error 

analysis. The root–mean–square deviation (RMSD) is a frequently used measure of the difference 

between values predicted by a model or an estimator and the value actually observed from the thing 

being modeled or estimated. RMSD is a good measure of accuracy. These individual differences are also 

called residuals, and the RMSD serves to aggregate them into a single measure of predictive power 

(http://en.wikipedia.org/wiki/Root_mean_square_deviation). Specifically, the RMSD is calculated by the 

function  

RMSD= sqrt (mean(sum of the squares of errors between corresponding grids)). 

Based on the 5mm *5 mm grids data, the RMSD were calculated for each case, and are listed in the 

Table 2.5 below.  Note that differences in the PIV and ADV RMSD values calculated when comparing 

against CFD results indicate an uncertainty in experimental results that is of the same order of 

magnitude as the uncertainty as the CFD results. 

 

 

Table 2.5: RMSD number between CFD and experimental data 

Water 

depth 
(inch) 

Velocity 
(fps) 

PIV and CFD ADV and CFD 

RMSD 
Relative 

error 
RMSD 

Relative 

error 

4.5 0.71 2.4017 0.11  4.2799 0.20  

6 0.71 4.532 0.21  4.3604 0.20  

9 0.71 2.2145 0.10  3.8758 0.18  

4.5 1.1 3.1694 0.09  6.258 0.19  

6 1.1 4.749 0.14  7.3586 0.22  

9 1.1 3.4901 0.10  5.7846 0.17  
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2.5. Modeling of Truck Generated Salt Spray under Bridge with Sliding Mesh 

2.5.1. Model development 

2.5.1.1. Geometry  

In the previous quarter, a CFD approach to the modeling of truck generated salt spray was initiated. The 

technique of using a sliding mesh was employed to introduce movement of the vehicle. Domains with 

the truck and the bridge were separately built and meshed.  A denser mesh with base size for an edge of 

0.1 m was defined for the area surrounding the truck and the bridge beams. The rest of the domain was 

meshed with the base size of an element equal to 0.5 m. The geometry of the Raleigh - Tamarack 

Overpass (Bridge No. 4172) was used in the CFD analysis. In the base model the geometry of the 

embankment was not taken into account, the model represented a case where no obstructions on the 

side of the truck are present. In the recent quarter two more cases were analyzed: (1) with a wall 

boundary close to the truck and (2) with the realistic inclined embankment on the side of the truck as it 

passes under the bridge. With these cases, the tunneling effect can be investigated further. It was 

presented in the previous quarter that a single truck is not causing many droplets to be lifted up to the 

bridge beam level. For that reason, cases with two trucks traveling in one lane were considered. This is a 

more realistic case representing regular traffic conditions. Also, there were cases where the influence of 

the wind was analyzed. It was assumed that the most influential will be the wind blowing from the back 

at 45 degrees to the direction of travel (like shown in Figure 2.48) 

 

 
Figure 2.48: Two additional geometries of the bridge (top) close wall (bottom) inclined embankement 

Wind direction 

Wind direction 
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For both models the mesh settings were modified for the section with the bridge so the total number of 

cells was not greater than 4,000,000.  

2.5.1.2. Spray generation 

In the last quarter difficulties with estimating initial conditions regarding the spray generation on the 

tires were highlighted. The droplet size distribution, mass flow rate, direction and velocity of the 

generated spay were the most important parameters to be considered. The studies on spray generation 

performed at Lawrence Livermore National Laboratory (LLNL) were described briefly and reasoning for 

assumed initial conditions for our simulations was explained.  

Set of simulations was started on a stationary vehicle, but oncoming air velocity of 60 mph, without the 

extended air domain and the bridge model. Of interest in this run was just the breakup of the droplets 

due to their impact with the wheel well. A goal of this simulation was to find what size droplets can be 

expected to leave the wheel well zone after the breakup. This size range is then used as a droplet 

injection boundary condition in the simulations of a moving vehicle, where it is too computationally 

expensive to use the breakup model. The Bai-Gosman wall impingement model was activated in these 

simulations. In the last quarter only results from one simulation were presented. In this quarter a whole 

matrix of simulations was performed for this part of the project and the results are presented below.  

Two separate groups of simulations were performed with different angle of injection of the droplets 

relatively to the ground – 7.5 degrees and 15 degrees respectively. For both of these angles three 

different initial sizes of droplets were considered: 0.3 mm, 0.5 mm and 0.7 mm. These were 

representing the mean size of droplets generated in the experiments performed at LLNL. The 

simulations were run for 0.5 s and the mass flow rate of the spray was set to 4.5 kg/s following the LLNL 

findings. 

Figure 2.49 shows final state of the simulations for the initial droplet size being 0.5 mm. Droplets are 

colored depending on their size with blue representing the smallest and red representing the biggest 

ones (with initial injection size). The red droplets be ind t e w eel didn’t  it any elements of the wheel 

well and didn’t break up. Although their trajectories look different in both cases (7.5 degrees and 15 

degrees) the bulk of the smaller droplets leave the wheel well after the breakup to the side of it in a 

similar way for 7.5 degrees and 15 degrees cases.  
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Figure 2.49: Droplet breakup in the wheel well (top) initial injection angle 7.5 degrees  
(bottom) initial injection angle 15 degrees 

Figure 2.50 shows the distribution of the droplet sizes in the performed simulations. Comparing the 

corresponding results for injection angles 7.5 degrees and 15 degrees (left and right column) not much 

difference can be found. This initial angle was not relevant for the droplet size distribution. For different 

initial size of droplets different distributions were obtained. The highest counts were noted at around 

sizes 0.06 mm, 0.10 mm and 0.16 mm for the initial sizes 0.3 mm, 0.5 mm and 0.7 mm respectively. This 

study is in agreement with the assumed previously droplet size of interest between 0.025 mm and 0.2 

mm. Droplets bigger than 0.2 mm diameter are not influenced much by the air flow and move following 

ballistic trajectories. However, smaller droplets in the micron size range are very likely to be suspended 

Injection angle: 7.5 degrees 

Injection angle: 15 degrees 
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in the air and may significantly influence the corrosion rate of the bridge beams. This part of the size 

spectrum was not analyzed here.  

 

Figure 2.50: Droplet distribution after break-up in the wheel well  

  

Initial droplet size: 0.3 mm 

Initial angle: 7.5 degrees 

Initial droplet size: 0.3 mm 

Initial angle: 15 degrees 

Initial droplet size: 0.5 mm 

Initial angle: 7.5 degrees 

Initial droplet size: 0.5 mm 

Initial angle: 15 degrees 

Initial droplet size: 0.7 mm 

Initial angle: 7.5 degrees 

Initial droplet size: 0.7 mm 

Initial angle: 15 degrees 
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2.5.2. Simulations of the moving truck 

As the main goal of this study is to provide an assessment of possible travel paths of a salt spray 

generated by the tires to the bridge beams, several cases were analyzed.  In the previous quarter, cases 

with a single truck were analyzed. In all these cases not many droplets were moved to the beam level. In 

the recent quarter multiple cases with two trucks, one following another, were analyzed. Table 2.6 

shows different parameters taken into account in the current matrix of simulations – four different 

droplet sizes, three different boundaries under the bridge, different wind conditions and different 

number of trucks. Since one simulation takes about 10 days of wall time, it is difficult to perform all the 

possible cases in a reasonable time. Not all the cases will be analyzed but at least for two sizes of 

droplets most of the possible cases will be simulated. In the recent quarter results for the droplet size of 

0.05 mm are shown to establish a clearer picture of the up to date findings.  

Table 2.6: List of analyzed cases 

droplet sizes (mm) 0.01, 0.025, 0.05, 0.1 

boundary types under the bridge no boundaries, close wall, sloped embankment 

wind conditions no wind, wind from the back at 45 with 10 mph, 30 mph speed 

number of vehicles one, two  

 
The number of droplet hits on the beams presented last time can lead to a misleading conclusion about 
the actual number of droplets making up to the level of the beams. Since the turbulent large field 
cannot be modeled exactly with a RANS model and the number of hits may be underrepresented it is 
better to show the distribution of the droplets’  eig ts under the bridge. A sampling volume was built 
for each case bounded by the extent of the bridge and a plane cutting the vehicle through the middle of 
it. The distribution at four different stages of the simulation are calculated:  

 At 4.0 sec – when the first vehicle is under the bridge 

 At 5.0 sec – when the first vehicle leaves the underpass 

 At 5.5 sec – when the second vehicle is under the bridge 

 At 6.0 sec – when the second vehicle leaves the underpass. 

Figure 2.51 through Figure 2.56 show the distribution of the droplets for the different boundary and 
wind conditions. In red and orange color are shown bars representing droplets making it up to the level 
of the beams. Red bars indicate droplets that are up between the beams, and orange bars indicate 
droplets that are within 0.25 m of the bottom of the beams. The bottom flange of the bridge beam is 
located at 5.5 m and the bottom surface of the deck is located at 6.9 m. Droplets in between that range 
may contribute to the salt spray deposition on the elements of the bridge. Interesting is the fact that for 
the case with the wall there are considerably fewer droplets at the beam level (Figure 2.52) than for the 
case with open boundaries (Figure 2.51). For the case with the high velocity wind this number drops 
even more (Figure 2.53). The droplets are transported by the wind from underneath the bridge outside 
of that part of domain.  Surprising is the fact that for the case with the slope a lot more droplets make it 
above the 5.5 m level (Figure 2.54). The wind of 10 mph speed does not make much of a difference in 
this distribution (Figure 2.55). However, high velocity wind of 30 mph increases considerably the 
number of droplets making it up to the beam levels (Figure 2.56).  Wind frequent gusts of up to 30 mph 
were considered a likely but near maximum wind speed for winter storms or windy days in which the 
average wind speed is between 15 and 20 mph.  
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Figure 2.51: Droplet distribution in the volume under the bridge for initial model (no boundaries, no wind) at: 

(a) 4.0 sec (b) 5.sec (c) 5.5 sec (d) 6.5 sec 
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Figure 2.52: Droplet distribution in the volume under the bridge for the model with the wall, no wind at: 

(a) 4.0 sec (b) 5.0 sec (c) 5.5 sec (d) 6.5 sec 
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Figure 2.53: Droplet distribution in the volume under the bridge for the model with the wall and 30 mph wind 

at: (a) 4.0 sec (b) 5.0 sec (c) 5.5 sec (d) 6.5 sec 
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Figure 2.54: Droplet distribution in the volume under the bridge for the model with sloped embankment and no 

wind at: (a) 4.0 sec (b) 5.0 sec (c) 5.5 sec (d) 6.5 sec 



 

TRACC/TFHRC Y2Q1  Page 61 
 

  

Figure 2.55: Droplet distribution in the volume under the bridge for the model with sloped embankment and 10 

mph wind at: (a) 4.0 sec (b) 5.0 sec (c) 5.5 sec (d) 6.5 sec 
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Figure 2.56: Droplet distribution in the volume under the bridge for the model with sloped embankment and 30 

mph wind at: (a) 4.0 sec (b) 5.0 sec (c) 5.5 sec (d) 6.5 sec 
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Figure 2.57 through Figure 2.60 show the velocity vector plots under the bridge for different boundary 

conditions under the bridge. These plots may actually explain why for the case with the sloped 

embankment we see the biggest number of droplets traveling to the beam level. Figure 2.57 shows 

velocity vectors at four different time frames (4.0. sec, 5.0 sec, 5.5 sec and 6.5 sec) for the initial model 

without obstructions underneath the bridge. Figure 2.58 is for the case with the wall and lateral wind. 

Once the second truck leaves this cross section the wind dominates the flow. There are no vortices that 

could possibly transport the droplets up to the beams. The situation is quite different for the cases with 

the sloped embankment presented in Figure 2.59 and Figure 2.60. On the surface of the slope there are 

recirculation zones forming. Large vortices are created that may transport droplets up to the level of the 

beams.  

In the next quarter the matrix of the simulations will be expanded to more cases and the droplet 

distributions will be plotted for further stages of the simulations i.e. 8.0 sec and 10 sec when all the 

droplets leave the bridge area.  
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Figure 2.57: Velocity vector plot under the bridge in the initial model (no boundaries, no wind) at: 

(a) 4.0 sec (b) 5.0 sec (c) 5.5 sec (d) 6.5 sec 
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Figure 2.58: Velocity vector plot under the bridge in the model with the wall and 30 mph wind at: 

(a) 4.0 sec (b) 5.0 sec (c) 5.5 sec (d) 6.5 sec 
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Figure 2.59: Velocity vector plot under the bridge for the model with sloped embankment and no wind at:  

(a) 4.0 sec (b) 5.0 sec (c) 5.5 sec (d) 6.5 sec 
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Figure 2.60: Velocity vector plot under the bridge for the model with sloped embankment and 30 mph wind at: 

(a) 4.0 sec (b) 5.0 sec (c) 5.5 sec (d) 6.5 sec 
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